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Abstract

The study of pursuit curves is valuable in the context of air-to-air
combat as pure pursuit guidance (heading directly at the target) is
oftentimes implemented. The problems considered in this paper con-
cern a Pursuer, implementing pure pursuit (i.e., line of sight guidance),
chasing an Evader who holds course. Previous results are applicable
to the case in which capture is defined as the two agents being coin-
cident, i.e., point capture. The focus here is on obtaining results for
the more realistic case where the pursuer is endowed with an effector
whose range is finite. The scenario in which the Evader begins inside
the Pursuer’s effector range is also considered (i.e., escape from persis-
tent surveillance, among other potential applications). Questions herein
addressed include: does the engagement end in head-on collision or tail
chase, will the Evader be captured or escape, what is the minimum
distance the Pursuer will attain, for two Pursuers, is simultaneous cap-
ture/escape optimal and, if so, what is the optimal heading for the
Evader (max time to capture, or min time to escape), and the feasi-
bility for a fast Evader to escape from many Pursuers. Where possible,
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closed-form, analytic results are obtained, otherwise attention is given to
computability with an eye towards real-time, on-board implementation.

Keywords: pursuit-evasion, pure pursuit, persistent surveillance, finite
capture radius

1 Introduction

The subject of one object pursuing another by aiming directly at it has long
captured the imagination of mathematicians, engineers, and theoretical biolo-
gists alike. Generally, the curve traced by the Pursuer’s motion is referred to
as a pursuit curve [1, 2]. In its purported original incarnation, the problem
was formulated by Bouguer as a pursuer (a pirate ship) attempting to capture
an evader (a merchant ship) using Pure Pursuit (PP) [3]. It was assumed that
the Evader’s motion is a straight line perpendicular to the initial line of sight
(LOS), i.e., a broadside or abeam attack. Since then, many works have been
published on this problem and its many variants. Most notably, the more gen-
eral case in which the Evader moves on a straight line that is not perpendicular
to the initial LOS was only fairly recently solved in closed form by Eliezer
and Barton [4, 5]. No attempt at a comprehensive survey is made here; much
of the history and pertinent works are described in [6, 7][8, Chap. 3]. Nahin’s
book [6] re-examines the “classic” pursuit problem (in which the Evader’s path
is a straight line) as well as considering more complicated Evader paths (such
as a circle) and cyclic pursuit (in which ring of Pursuers pursue one another).
Kamimura and Ohira’s book [7] contains many of the same problems as well
as some three-dimensional variants (such as helical Evader paths); it also con-
tains chapters on collective motion and group pursuit-evasion, which heavily
emphasize simulation over rigorous analysis. Pure Pursuit is the subject of a
full chapter in [8]; the book, which gives a general treatment of missile guid-
ance laws, illustrates one of the important physical applications of pursuit
curves, namely in air-to-air combat. One very recent, noteworthy contribution
to this field is [9] wherein Gard proved that the Evader can lead a Pursuer who
employs PP to any point in Rn while maintaining some desired minimum sep-
aration distance for the case of equal speeds. Note that the results presented
herein apply to the interesting case of equal speeds.

It must also be mentioned that there is a large section of literature devoted
to game formulations of pursuit-evasion. This includes works pertaining to fast
evaders as well as multiple pursuers, both of which are analyzed in this paper
under the assumption that the Pursuers employ PP. Of course, pursuit-evasion
was one of the main flavors of example within Isaacs’ book on differential
games [10] wherein a candidate solution was presented for the two-Pursuer
pursuit-evasion game of min max capture time with point capture. Concern-
ing evasion from many pursuers, many works have analyzed different varations
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including the work by Pshenichnyi [11], Chikrii [12], in addition to the excel-
lent review of the subject by Kumkov et al. [13]. As for games with a faster
Evader, the classic work by Hagedorn and Breakwell [14] solves a game wherein
the Evader must pass between two Pursuers who seek to approach as close
as possible. The work of Chernous’ko [15] contains an important result which
states that a fast Evader can avoid point capture by any number of slower
Pursuers via an arbitrarily small deviation from its prespecified straight-line
path. This result, in particular, highlights the need to consider non-point cap-
ture in the context of a faster Evader. Finally, works such as those by Ramana
and Kothari [16] and Garcia and Bopardikar [17] consider a faster Evader
against Pursuers who cooperate by trying to enclose the former within some
formation.

Much of the existing work on PP has been focused on the case in which
the Evader’s path is a straight line and capture occurs when the Pursuer and
Evader are coincident (point capture) [2, 4, 5, 8]. This paper continues in a
similar vain but with a focus on non-point capture; that is, the Pursuer may
effect capture within some specified distance. This paper pertains to pursuit-
evasion scenarios taking place in an unbounded, obstacle-free two-dimensional
environment, i.e., the realistic plane. The agents’ speeds are fixed and non-
zero. It is assumed throughout that the Evader implements a constant heading
(holds course) in the inertial (global) Cartesian frame – in some cases, the
Evader heading is assumed to be given, and in others it may be considered to
be a decision made at the initial time instant. The Pursuer(s) strategy is PP;
in the case of multiple Pursuers, the speeds are assumed to be equal, however
the results in this paper can be readily extended to the unequal speed case
and/or the unequal effector range case. The Pursuer(s) may be endowed with
an effector of radius l. Table 1 lists the different scenarios considered; µ is
the ratio of Evader and Pursuer speeds and d0 is the initial distance between
the agents. Scenario 4, “Escape from surveillance”, is distinct from the other
scenarios in that the Evader begins inside the Pursuer’s effector range and
termination is said to occur when the Evader is able to maneuver beyond the
Pursuer’s range. There is no notion of capture in this Scenario. In this case,
the Pursuer’s effector may be thought of as some kind of sensor which the
Evader would like to avoid.

Table 1 Taxonomy of Pursuit-Evasion Scenarios; µ is the ratio of Evader and Pursuer
speeds, l is the Pursuer’s effector range, and d0 is the initial separation distance between
the agents.

# Setting Description

1 µ < 1 l = 0 d0 > 0 Point Capture
2 µ < 1 l > 0 d0 > l Capture (slow Evader)
3 µ > 1 l > 0 d0 > l Capture (fast Evader)
4 µ > 1 l > 0 d0 < l Escape from surveillance



4 Pure Pursuit with an Effector

The contributions of this work are as follows (with parentheses indicating
to which Scenario(s) the result applies). Aspect angle refers to the angle that
the Evader’s heading makes w.r.t. the Pursuer’s LOS.

• Solution for the Pursuer’s separation distance as a function of aspect angle
(1–4)

• Analytic determination of head-on versus tail-chase final configuration (2, 3)
• Necessary and sufficient condition for capture/evasion (3)
• Solution for capture time (2, 3) and escape time (4)
• Proof of the existence of a solution for simultaneous capture (1)
• Necessary condition for simultaneous capture (1, 2) and escape (4)
• Sufficient condition for simultaneous capture (2)

Insomuch as is possible, the results are closed-form, analytic expression.
Otherwise, attention is given to numerical implementation.

The remainder of the paper is organized as follows. Section 2 specifies the
problem setup. Section 3 provides the analysis leading to the determination of
the final configuration. Section 4 contains the results pertaining to final time
(i.e., when capture or escape occurs). Section 5 examines the case where there
are two Pursuers wherein simultaneous capture (or escape) is possible. Finally,
Section 6 contains the conclusion.

2 Preliminaries

Let the agents’ positions be specified by E ≡ (xE , yE) and P ≡ (xP , yP ),
E,P ∈ R2. In the case that there are M > 1 Pursuers, the ith Pursuer position
is denoted Pi, where i ∈ 1, . . . ,M . Without loss of generality, the Pursuer(s’)

x
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θ

ψ

d0
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P

l

ψf

L
E

Ef

Fig. 1 Schematic illustration of the scenario corresponding to Scenario 2: slow Evader and
finite capture radius.
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speed is fixed to 1 and the Evader’s speed is µ. Additionally, w.l.o.g., consider a
Cartesian frame (x, y) whose origin is the Pursuer’s initial position and whose
positive y-axis is aligned with the line segment PE at initial time (the green
axes in Fig. 1)1. The kinematics, which arise from P employing the strategy
of PP are 

ẋE
ẏE
ẋP
ẏP

 =


µ cos (θ)
µ sin (θ)
xE−xP

d
yE−yP

d

 (1)

where d ≡
√

(xE − xP )2 + (yE − yP )2 is the instantaneous distance between
the agents, and θ is the Evader’s heading angle w.r.t. the positive x-axis. The
Pursuer’s effector range is l – in the case of capture, this corresponds to the
capture radius; in the case of surveillance, this corresponds to observation
range. Final time, tf , is defined as the time at which the distance between P
and E is equal to the effector range, i.e., d(tf ) = l.

The rotated Cartesian frame, (X,Y ), (shown in black in Fig. 1) is used
here in the expression of the so-called pursuit curve [2]. In this frame, the
origin is the Evader’s position at the initial time and the Y -axis is aligned with
the Evader’s (constant) direction of motion, or course. The kinematics in this
frame are 

ẊE

ẎE
ẊP

ẎP

 =


0
µ

− XP√
X2
P+(YE−YP )2

YE−YP√
X2
P+(YE−YP )2

 . (2)

Two useful expressions are given by Barton and Eliezer, namely the tangent
function [2]

dYP
dXP

=
1

2

(
w

(
XP

XP0

)µ
− 1

w

(
XP

XP0

)−µ)
, (3)

and the solution of P ’s trajectory [2]:

YP (XP ) =
µXP0

(1 + µ sin θ)

cos θ(1− µ2)
+

XP0

2

[
w

1 + µ

(
XP

XP0

)1+µ

− 1

w(1− µ)

(
XP

XP0

)1−µ
]
,

(4)

where w ≡ 1−sin θ
cos θ and XP0

≡ XP (t0) = d0 cos θ. Note that, at all time, the
tangent to the Pursuer’s trajectory points to E, by construction [2, 8].

There are two cases for which (4) does not apply: 1) when θ = ±π2 , and
2) when µ = 1. First, when θ = ±π2 , the Evader is moving directly away or
towards the Pursuer, respectively. Either way, (4) is ill-defined (as the first

1We utilize this convention in some portions of the text to match the work of [2].
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term goes to infinity) but also unnecessary as the scenario plays out entirely
on the one-dimensional line passing through the two agents. Second, when
µ = 1, the last term in the bracket goes to infinity. However, by substituting
µ = 1 into (3) and integrating, a specialized pursuit curve expression may be
obtained2:

YP (XP ) = −XP0 tan θ +
wXP0

4

((
XP

XP0

)2

− 1

)
− XP0

2w
log

(
XP

XP0

)
. (5)

The transformation to the (x, y) frame is[
xP
yP

]
=

[
sin θ cos θ
− cos θ sin θ

] [
XP

YP

]
+

[
0
d0

]
. (6)

Lastly, consider a rotating frame which is defined by the distance from P to
E and E’s heading w.r.t. P ’s line of sight. The kinematics (which are obtained
by inspection of Fig. 1) are [

ḋ

ψ̇

]
=

[
µ cosψ − 1
−µd sinψ

]
(7)

where, w.l.o.g., ψ ∈ [0, π]. The term ψ is referred to as the aspect angle, and
is generally not constant even though the Evader’s heading is constant in the
inertial frame (unless ψ = 0). It is clear, with the convention for ψ, that ψ̇ < 0
for all t since sinψ > 0 and d > 0. This monotonicity holds whether the Evader
is slow or fast. Regarding distance, d, if the Evader is slow (µ < 1) then ḋ < 0
for all t which means the Pursuer is always getting closer; but if the speed
ratio µ > 1 then there is a range of ψ for which ḋ > 0.

Proposition 1 A Pursuer remains on the same half-plane in which it started w.r.t.
the Evader’s heading and initial position.

Proof In order for the Pursuer to cross into the opposite half-plane there must be
a time at which ψ = 0. It is clear from (7) that ψ̇ = 0 and thus the Pursuer will
remain in a trailing configuration as long as the Evader holds course (i.e., P never
crosses into the opposite half-plane). �

It is for this reason that we restrict our attention to the range ψ ∈ [0, π].

2This had been left as an exercise to the reader in [2]. It can be shown, using (9) that the

distance asymptotically approaches
d0(cosψ0+1)

2 .
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3 Final Configuration

Before addressing the determination of final time for a particular problem
instance, it is important to determine whether the Evader has a component
of velocity towards or away from the Pursuer at final time, i.e., whether the
scenario ends in a head-on or tail-chase configuration. To do this, we obtain
the solution of (7). First, divide the two differential equations:

dd

dψ
=
ḋ

ψ̇
=
µ cosψ − 1

−µd sinψ

=
d
(

1
µ − cosψ

)
sinψ

, (8)

which can be simplified as follows

1

d
dd =

(
1

µ sinψ
− 1

tanψ

)
dψ∫ df

d0

1

d
dd =

∫ ψf

ψ0

1

µ sinψ
dψ−

∫ ψf

ψ0

1

tanψ
dψ

[ln d]
df
d0

= − 1

µ
[ln (cotψ + cscψ)]

ψf
ψ0
− [ln (sinψ)]

ψf
ψ0

ln df − ln d0 = − 1

µ
ln (cotψf + cscψf )

+
1

µ
ln (cotψ0 + cscψ0)

− ln sinψf + ln sinψ0.

Taking the exponential of both sides gives

eln df−ln d0 = e−
1
µ ln(cotψf+cscψf )+ 1

µ ln(cotψ0+cscψ0)−ln sinψf+ln sinψ0 ,

which becomes

eln df

eln d0
= e−

1
µ ln(cotψf+cscψf )eln 1

µ (cotψ0+cscψ0) eln sinψ0

eln sinψf

df
d0

= (cotψf + cscψf )
− 1
µ (cotψ0 + cscψ0)

1
µ

sinψ0

sinψf
,

which can be rearranged to

df (cotψf + cscψf )
1
µ sinψf = d0 (cotψ0 + cscψ0)

1
µ sinψ0. (9)

This expression is the solution of the system (7). Given the initial and final
aspect angle and either distance, (9) yields a closed-form, analytic solution for
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the unknown distance. Unfortunately, if either ψ0 or ψf is unknown, then (9)
must be solved numerically.

Proposition 2 The curve

d⊥ (ψ0; l, µ) = l (cotψ0 + cscψ0)−
1
µ cscψ0 (10)

partitions the state space into a region of Pursuer initial positions, (d0, ψ0), which
end in head-on collision (cosψf < 0), and a region for which the scenario ends in a
tail-chase (cosψf > 0). More precisely:

sign
(
cosψf

)
=


−1 if d0 < d⊥

undef. if d0 = d⊥

1 if d0 > d⊥.

(11)

Proof Substituting df = l and ψf = π
2 into (9) immediately gives (10). This config-

uration corresponds to the Evader’s heading being perpendicular to the Pursuer’s at
the moment that d → l, which is the case that is neither head-on collision nor tail-
chase. If ψf = π

2 then cosψf = 0, hence sign
(
cosψf

)
is undefined as in (11). The

remainder of the proof is broken into two cases depending on the magnitude of µ.

Slow Evader

in this case, µ < 1 and both ψ and d are monotonically decreasing w.r.t. time. Thus,
if, for the same ψ0, d0 < d⊥, the Pursuer must take a shorter time to capture the
Evader. Since ψ is monotonic, it must be the case that ψf >

π
2 which implies that

cosψf < 0. The case where d0 > d⊥ follows by similar logic.

Fast Evader

in this case, µ > 1 and only ψ is monotonically decreasing w.r.t. time. From (7), it
is clear that

sign(ḋ) =


−1 if cosψ < 1

µ

0 if cosψ = 1
µ

1 if cosψ > 1
µ .

Therefore, the distance becomes monotonically increasing once cosψ > 1
µ . Capture,

if it occurs at all, must take place while cosψ < 1
µ . Thus capture can only occur

in the portion of the trajectory for which d is monotonically decreasing. Because of
this, the same logic used to prove the case where µ < 1 can be applied to this case
as well. �

Remark 1 For the escape from surveillance scenario (Scenario 4), the final configura-
tion is always tail-chase because for E to escape the observation range of P it must
have df = l and ḋf > 0, which means cosψf >

1
µ > 0.

Proposition 3 For the fast Evader capture scenario (µ > 1, d0 > l), the curve

dc/e (ψ0; l, µ) = l
(

cotψ† + cscψ†
) 1
µ

sinψ† · (cotψ0 + cscψ0)−
1
µ cscψ0, (12)
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where

ψ† ≡ cos−1 1

µ
, (13)

partitions the state space into a region of Pursuer initial positions, (d0, ψ0), which
end in capture and a region for which evasion occurs. In the latter case, tf → ∞,
ψ → 0, and d → ∞. Stated differently, d0 < dc/e is a necessary and sufficient
condition for capture.

Proof Two things are necessary for capture: the first is that the distance from E
to P is equal to the latter’s effector range, l, and the second is that P is actually
closing in on E (i.e., ḋ < 0). If d = l but ḋ ≥ 0 then the Evader is escaping since d
will increase monotonically from there on out. This is akin to Isaacs’ notion of the
Usable Part (UP) of the terminal surface [10].

The limiting case for escape occurs when ḋ = 0, which, from (7) occurs when
ψ = ψ†. For any ψ < ψ† it would be the case that ḋ > 0. Then (12) follows directly
from substituting df = l and ψf = ψ† into (9). The fact that d0 < dc/e is required
follows from monotonicity arguments akin to those in the proof of Proposition 2.

�

Proposition 4 Ignoring termination, the minimum inter-agent distance in the fast
Evader case (µ > 1) is

dmin (d0, ψ0; µ) = d0 (cotψ0 + cscψ0)
1
µ sinψ0 ·

(
cotψ† + cscψ†

)− 1
µ

cscψ†, (14)

if ψ0 > ψ†, and dmin = d0 otherwise.

Proof Eq. (14) is obtained by substituting df = dmin and ψf = ψ† into (9). This

corresponds to the minimum distance because, from (7) ḋ = 0 when ψ = ψ† and the
fact that d is monotonically decreasing while ψ > ψ† and monotonically increasing
while ψ < ψ†. If ψ < ψ†, then d is monotonically decreasing and thus the minimum
distance is the current distance. �

Corollary 1 For the fast Evader capture scenario (µ > 1, d0 > l), the capture
condition, (12), is equivalent to dmin < l.

Proof The result follows directly from Propositions 2–4. �

Following are some examples which illustrate the aforementioned curves
and regions for both the slow and fast Evader scenarios. In all of these exam-
ples, the Evader’s heading is aligned with the positive x-axis. Fig. 2 shows the
curve d⊥ for a slow Evader along with example tail-chase and head-on Pursuer
trajectories. Then Fig. 3 shows a similar plot, but for a fast Evader; addition-
ally, the curve dc/e is shown. In the case where P begins outside the capture
region (labeled “Miss Example”), the trajectory is shown up to the time at
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d⊥, cos(ψf ) = 0

Head-on Region

Tail-chase Example

Head-on Example

Fig. 2 Slow Evader example; µ = 0.8, l = 1.
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0
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10

15

E

P

x

y

dc/e, cos(ψf ) = 1/µ

d⊥, cos(ψf ) = 0

Capture Region

Capture Example

Miss Example

Fig. 3 Fast Evader example; µ = 1.2, l = 1.

which d = dmin. Finally, Fig. 4 shows a map of dmin as a function of P ’s initial
position.

4 Final Time

In this section, the final time, tf , associated with each of the scenarios is
characterized. The final configuration is an important component in the deter-
mination of the final time in the case of non-point capture (l > 0). For point
capture, however, there is no need to make a distinction between head-on and
tail-chase; indeed the capture time for a slow, fixed-course Evader and point
capture is well-known, appearing in [2, 8, 18] and many other places. Given
the pursuit curve in (4), the final time associated with Scenario 1 is found
by substituting in XPf = 0 and YEf = YPf and noting that E travels from
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Fig. 4 Miss distance as a function of P ’s initial position; µ = 1.2, l = 1. The yellow lines
mark out a cone inside which dmin = d0.

(XE , YE) = (0, 0) to (0, YEf ) in tf time at speed µ. Thus,

tf =
YEf
µ

=
YP (XP = 0)

µ

=

(
1 + µ sin θ

1− µ2

)
d0 (15)

In Scenarios 2–4 the Pursuer’s effector range is l > 0. Let the final lateral
separation in the Evader-aligned frame, (X,Y ), be defined as XPf ≡ L (see

Fig. 1). As in every other point along P ’s trajectory, the line-of-sight PfEf , is
tangent to the pursuit curve, YP (XP ) [8]. This observation leads to a derivation
for L as follows:

tanψf =
dXP

dYP

∣∣∣∣
t=tf

cotψf =
dYP
dXP

∣∣∣∣
t=tf√

1− sin2 ψf

sinψf
=

l
√

1− L2

l2

L
=

l2
(

1− L2

l2

)
= L2

(
dYP
dXP

∣∣∣∣
t=tf

)2

l2 − L2 =
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=⇒ L =
l√

1 +
(

dYP
dXP

∣∣
t=tf

)2
. (16)

Evaluating (3) at XP = L and substituting into the above gives

L =
l√

1 + 1
4

[
w2
(

L
XP0

)2µ

+ 1
w2

(
L
XP0

)−2µ

− 2

]
=

l√
1
4

[
w2
(

L
XP0

)2µ

+ 1
w2

(
L
XP0

)−2µ

+ 2

]
=⇒ L =

2l

w
(

L
XP0

)µ
+ 1

w

(
L
XP0

)−µ (17)

Proposition 5 For d0 > l > 0, µ < 1 (i.e., Scenario 2), (17) has a unique solution
on the interval L ∈ [0,min {d0 cos θ, l}).

Proof Concerning the range for the solution, we must have L < l because L > l
would require P being further from E than the capture radius. Also, it must be the
case that L = XPf < XP0

= d0 cos θ because XP (t) is monotonically decreasing
(which follows from the fact that P is employing the strategy PP) and d0 > l.
Two conditions were used to derive (17): (i) df = l and (ii) the tangency equation,
(3), is satisfied. The latter is true by construction, since P is always aiming at E’s
instantaneous position. As for the former, if d0 > l, then at some point it must be
the case that d = l because d is monotonically decreasing when µ < 1 (see (7)).
Additionally, there can only be one such instance, again, because of d’s monotonicity.
Therefore, a solution to (17) exists and is unique. �

Proposition 6 For d0 > l > 0, µ > 1 (i.e., Scenario 3), (17) has a unique solution
on the interval L ∈ [0,min {d0 cos θ, l}) if and only if d0 < dc/e.

Proof When d0 < dc/e, capture must occur due to Proposition 3. The distance
between P and E must be monotonically decreasing along the entire trajectory since,
in order for capture to be possible, ψ > ψ† for all t. Therefore, by similar arguments
as in the preceding proof, the premise must be true. �

Proposition 7 For d0 < l, µ > 1 (i.e., Scenario 4), (17) has a unique solution on
the interval L ∈ [0,min {d0 cos θ, l}).
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Proof As in Scenario 3, d is monotonically decreasing w.r.t. time while ψ > ψ† and
monotonically increasing thereafter. Since d0 < l, eventually there must be a time
at which d = l, and this instance must be unique, and, as in previous proofs, this
implies that (17) is satisfied. �

Remark 2 When 0 < L� 1, (17) suffers from some numerical instability due to the
(L/X0)−µ term. This is often the case for Scenario 4, especially when µ is close to 1.
In this case, it is generally easier to numerically solve (9) for ψf and then compute
L = l sinψf .

In the general case, since the solution of L exists and is unique, any root
finding method is suitable for its computation. However, in some special cir-
cumstances, as shown in the following, the problem structure may be further
exploited to aid in the computation of L.

Proposition 8 If either (i) d0 > l and E can be captured or (ii) d0 < l with µ > 1,
and the speed ratio µ is a rational number (that is, µ = r

q where r, q ∈ N+), then the

solution of (17) may be obtained via the rooting of a polynomial.

Proof Define L ≡
(

L
XP0

) 1
q

and substitute into (17)

L qXP0
=

2l

wL r + 1
wL−r

=⇒ L q+rXP0
w + L q−rXP0

1

w
− 2l = 0. (18)

Thus L may be obtained as the solution of a (q + r)th-order (sparse) polynomial,
and the associated final lateral separation is L = L qXP0

. �

If, for example, the speed ratio is µ = 1
2 , it comes down to solving a cubic

equation.

Proposition 9 For d0 > l > 0 (i.e., Scenarios 2 and 3), the time to capture (if E
can be captured) is

tf =
1

µ

(
YP (L) + sign (d0 − d⊥)

√
l2 − L2

)
, (19)

where L is obtained as the solution of (17), and YP is given by (4).

Proof As in the point capture case, the final time is found by substituting the final
conditions into the pursuit curve, (4), and observing that E traverses a distance
YEf in tf time:

tf =
YEf
µ

=
1

µ

(
YPf ±

√
l2 − L2

)
.
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The ± in the above expression is due to the fact that YEf − YPf can be positive or
negative. In the case of tail-chase, YEf−YPf > 0, and vice versa for head-on collision.
Recall, from Proposition 2 (particularly (11)), that the question of final configuration
is determined by whether d ≶ d⊥. Hence, the sign (d0 − d⊥) term in (19) yields the
proper sign for YEf − YPf . �

Proposition 10 For d0 > l > 0 (i.e., Scenarios 2 and 3), the time to capture (if E
can be captured) is bounded above by

t̄ =

{
(15) if µ < 1
1
µ

(
YP

(
dmin sinψ†

)
+ sign(d0 − d⊥)dmin

µ

)
if µ > 1

, (20)

where YP is given by (4), dmin is given by (14), and ψ† is given by (13).

Proof For µ < 1, the distance, d, is always decreasing monotonically, so since l > 0,
the time to capture (i.e., (19)) must be less than the time to drive d → 0, which is
given by the point capture time, (15). For µ > 1, the distance, d, is always decreasing
monotonically until ψ = ψ† (as described in the proof of Proposition 4). The premise
is that capture is possible, so dmin < l from Corollary 1, so, again, the time to capture
must be less than the time to drive d→ dmin. �

This upper bound on capture time may be especially useful in the context of
engagements between many agents wherein computational complexity becomes
a concern. For example, a particular Evader may only need to consider the one
or two Pursuers with the smallest upper bound, after which a more precise
computation may be performed (similar to how certain Pursuers could be
ignored in [19]). Additionally, for µ < 1, the minimum upper bound, mini t̄i,
provides an upper bound on the value of the game of min max capture time
(c.f. [20]).

Corollary 2 For d0 < l, µ > 1 (i.e., Scenario 4), the time to capture is

tf =
1

µ

(
YP (L) +

√
l2 − L2

)
, (21)

where L is obtained as the solution of (17), and YP is given by (4).

Proof The proof is similar to the preceding proofs. Eq. (21) is a specialization of (19)
since the final configuration is always tail-chase for Scenario 4. This is because, for
escape, it must be the case that ḋf > 0, otherwise E is entering P ’s effector range.

Since µ > 1, we must have ψf < ψ† in order for ḋf > 0, and since ψ† < π
2 , this must

be a tail-chase configuration. �

Using (19), the capture loci (i.e., the final Evader position, Ef (ψ0)) are
plotted for various effector ranges, l, in Fig. 5. As expected, as the Pursuer’s
effector range increases, the locus shrinks towards E’s initial position. The
curve corresponding to l = 0 is obtained analytically via (15). A similar figure
appears in [8, Fig. 3.6], but for point capture with varying speed ratios.
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Fig. 5 Capture loci (final E positions) for constant-heading Evader trajectories for varying
effector ranges, l; here µ = 0.8.

5 Simultaneous Capture and Escape

In this section, a second Pursuer is considered whose speed is equal to that of
the first Pursuer3; the problem setup is shown in Fig. 6 (note that α ∈

[
0, π2

]
).

For Scenarios 1 and 2, it is assumed that E wishes to delay capture for as long
as possible while employing a constant-heading strategy. The point capture
version of this problem has been analyzed, e.g., in [18]. A finite-capture-range
version was treated in [21], however, there, the Evader was not constrained
to a constant heading and its optimal control was computed (i.e., maxθ(t) tf ).
For capture by a single Pursuer, E’s optimal heading was indeed constant
(Pure Evasion (PE), in fact). However, in the case of simultaneous capture
by both Pursuers, E’s optimal heading was not constant (except when E’s
position is on the bisector of the angle ∠P1EP2). The solution developed here
thus provides a lower bound for the optimal capture time, which, as will be
shown, requires far less computation than the optimal, in general. Note that
the solution for the differential game version of the two-Pursuer problem with
finite capture range is given in [22]. For Scenario 3, conditions for the existence
of an evasive heading are developed, which readily extend to the case of many
Pursuers. For Scenario 4, it is assumed that E wishes to escape from within
the Pursuers’ effector range in minimum time. The single-Pursuer case with
P implementing arg maxuP (t) tf is solved in [23]. To summarize, the Evader’s
optimal control is defined as

θ̂∗ ≡

{
arg maxθ̂ tf (θ̂) for Scenarios 1–3,

arg minθ̂ tf (θ̂) for Scenario 4 (escape).
(22)

As always, the two Pursuers implement PP.

3Unequal Pursuer speeds can also be handled by keeping track of, e.g., µ1 and µ2 throughout
the derivation, and similarly for unequal effector ranges via l1 and l2.
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Fig. 6 Schematic illustration of the two-Pursuer problem.

Let tf1 and tf2 be defined as the times at which d1 = l and d2 = l, respec-
tively. Obviously, whether we are considering capture or escape, simultaneity
implies that tf1 = tf2 . Also define θ̂∗ as the associated optimal Evader head-

ing for each Scenario, where θ̂ is the Evader’s heading measured w.r.t. the
angular bisector between the Pursuers. Furthermore, define α as the half-angle
between the Pursuers (c.f. Fig. 6).

Proposition 11 The optimal Evader heading for Scenarios 1–4 lies in the range
θ̂∗ ∈ [π − α, π + α].

Proof In all Scenarios, E must try to make ḋ1 and ḋ2 as large as possible. Headings
outside the stated range are worse for both distance rates than headings within the
range. A similar argument is given in [21] and analyzed in more detail there. �

It may be the case that one or other Pursuer is sufficiently far such that
they have no effect on the outcome. Then, it is always best for E to employ
the strategy PE against the nearer Pursuer, as in [21]. The following Theorems
establish conditions under which simultaneous capture is optimal. They are
based on checking if, while employing the strategy PE from a Pursuer, the
other Pursuer captures E first. Define the hypothetical single-Pursuer capture
time associated with PE as

tiPE =

∣∣∣∣di − l1− µ

∣∣∣∣, i = 1, 2. (23)

Theorem 1 For l = 0, µ < 1 (i.e., Scenario 1), simultaneous capture is optimal iff

t1PE > tf2(θ̂ = π − α) and t2PE > tf1(θ̂ = π + α), (24)

which simplifies to

1 + µ cos (2α)

1 + µ
<
d1

d2
<

1 + µ

1 + µ cos (2α)
. (25)

Proof First, we require (24) because, otherwise, it would be optimal to be captured
by only one Pursuer (c.f. [21]). Substituting (15) and (23) (with l = 0) into the first
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condition gives

d1

1− µ >

1− µ cos
(
θ̂ − α

)
1− µ2

 d2

d1

d2
>

1 + µ cos (2α)

1 + µ

A similar substitution for the second condition yields the inverse of this expression.
Hence (25) must be satisfied in order for simultaneous capture to be optimal. �

Note, an expression similar to (25) appears in the two-Pursuer differential
game version of the problem wherein the Pursuers select their instantaneous
headings so as to minimize capture time [24].

Theorem 2 For l = 0, µ < 1 (i.e., Scenario 1), if (25) is satisfied, then the (unique)
optimal Evader heading is

θ̂∗ = sin−1
(
d2 − d1

µd1C

)
− γ, (26)

where

sin γ =

(
d2

d1
− 1

)
cosα

C
, cos γ =

(
d2

d1
+ 1

)
sinα

C
, (27)

and

C =

√
d2

2

d2
1

+ 1 + 2
d2

d1
(1− 2 cos2 α). (28)

Proof Theorem 1 says that simultaneous capture is optimal since (25) is satisfied.
Thus there must be a θ̂∗ for which tf1 = tf2 . Define θ1 = 3π

2 −θ̂−α and θ2 = θ̂− π2−α.
Substituting them into (15) and setting the capture times equal gives(

d2

d1
− 1

)
cos θ̂ cosα+

(
d2

d1
+ 1

)
sin θ̂ sinα =

d2 − d1

µd1
.

Then, dividing by C, using the definition for γ, (27), and the angle sum identity,
gives (26). Moreover, the solution is unique because tf1 and tf2 are monotonically
decreasing and increasing, respectively, over the range specified in Proposition 11
(which can be easily shown by taking the derivative of tf1 and tf2 w.r.t. θ̂). �

The process is the same as above for Scenario 2, where l > 0.

Corollary 3 For l > 0, µ < 1 (i.e., Scenario 2), simultaneous capture is optimal iff

t1PE > tf2(θ̂ = π − α; l > 0),

t2PE > tf1(θ̂ = π + α; l > 0).
(29)

However, the computation of tf1(θ̂ = π + α) and tf2(θ̂ = π − α) is more
difficult (in that it requires the solution of (17)). A more computationally
efficient check involves making use of the capture time associated with point
capture at the cost of being a weaker condition.
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Theorem 3 For l = 0, µ < 1 (i.e., Scenario 2), simultaneous capture is optimal if

1 + cos(2α)

1 + µ
<
d1 − l
d2 − l

<
1 + µ

1 + cos(2α)
. (30)

Note, this condition is sufficient, but not necessary.

Proof First, note that the capture time associated with l > 0 must be less than the
capture time for l = 0 from Proposition 10. So, instead of checking for PE against
Pursuer i and computing the actual capture time for Pursuer j, the closed-form,
analytic expression for the point capture case, (15), may be used. Since tfl=0

> tfl>0
,

it is sufficient to show that tiPE > tfj,l=0
for i, j ∈ {1, 2}, i 6= j. Then (30) is obtained

similarly as in the proof of Theorem 1. �

Fig. 7 shows, for particular Pursuer positions, the regions for which con-
ditions (29) and (30) are satisfied. The sufficient region covers much of the
simultaneous capture region, especially for Evader positions near the Pursuers.

For Scenario 3, the situation is somewhat different since there is a range
of headings for which the Evader can guarantee evasion against a particular
Pursuer. In the event that E has no safe headings to take when there are two
Pursuers, then Corollary 3 applies. The interesting feature of this case thus
becomes the Evader’s range of safe headings. Recall that the limiting case
for capture when µ > 1 corresponds with ψf = ψ† and df = l since this
corresponds to the minimum distance (c.f. 4). Then, given the initial position
of P and E, the safe range of Evader headings is given by Ψs ≡ [−ψs, ψs],

−10 −5 0 5 10

0

5

10

15

20

P1 P2

x

y

Nec/Suff

Sufficient

Fig. 7 Example coverage of the sufficient condition, (30), compared to the necessary and
sufficient condition, (29); the Pursuer positions are fixed and the regions correspond to
possible Evader positions, µ = 0.8 and l = 2.
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Fig. 8 Fast capture example with many Pursuers in which the safe range of Evader head-
ings (shown as the clear cone) is nonempty. For the purposes of visualization, the complement
of Ψsi is shown. Here, µ = 1.2 and l = 1.

where ψs is the (numerical) solution of (9). If there are many Pursuers, the safe
range associated with each Pursuer, Ψsi , may be computed, and the overall
safe range is given by their intersection:

Ψs = ∩Mi=1Ψsi . (31)

Of course, if Ψs = ∅, then capture is guaranteed. Fig. 8 shows an example with
M = 8 Pursuers in which the overall safe range, Ψs, is nonempty. The Evader
need only choose a heading in the clear region in order to guarantee evasion.

Finally, for Scenario 4, recall that the Evader seeks to minimize the amount
of time it takes to drive d > l; the necessary and sufficient condition for the
optimality of simultaneous escape is as follows.

Corollary 4 For l > 0, µ > 1 (i.e., Scenario 4), if d1, d2 < l then simultaneous
escape is optimal iff

t1PE < tf2(θ̂ = π − α; l > 0),

t2PE < tf1(θ̂ = π + α; l > 0).
(32)

Unlike in Scenario 2 there is no obvious relaxation of this condition, since
point capture is not generally possible when µ > 1. The general case in which
E is inside the effector range of one Pursuer but outside the other’s is more
complex, hence, above it is assumed that E is within l of both Pursuers. Fig. 9
shows an example of simultaneous escape.
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Fig. 9 Simultaneous escape example with the numerically computed optimal Evader head-
ing; µ = 1.2 and l = 1.

6 Conclusion

In this paper, we have extended the results for the classical pursuit-evasion
problem into the realm of non-point capture. These results are thus one step
closer to real-world situations, such as air-to-air combat, wherein a missile
armed with a proximity fuse need only come within some finite distance to
destroy its target. The curves governing the final configuration (tail-chase or
head-on) and whether capture happens (for a speed ratio µ > 1) were obtained
in closed form. An analytic expression for the minimum distance attained by
the Pursuer was also derived. The final time for finite effector range (l > 0)
may be obtained via any standard root-finding method, or (for rational µ) as
the rooting of a sparse polynomial. Some of the results were applied directly to
the wolf pack scenario of many-on-one, i.e., M ≥ 2 Pursuers. Another possible
extension is to utilize the safe range for Evader headings as a constraint in an
Evader path planning algorithm. Lastly, the scenario of escape from persistent
surveillance with multiple Pursuers is a rich area for further development.
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[13] Kumkov, S.S., Le Ménec, S., Patsko, V.S.: Zero-sum pursuit-evasion dif-
ferential games with many objects: Survey of publications. Dynamic
Games and Applications 7, 609–633 (2017). https://doi.org/10.1007/
s13235-016-0209-z

[14] Hagedorn, P., Breakwell, J.V.: A differential game with two pursuers and
one evader. Journal of Optimization Theory and Applications 18, 15–29
(1976). https://doi.org/10.1007/BF00933791

[15] Chernous’ko, F.L.: A problem of evasion from many pursuers. Journal of
Applied Mathematics and Mechanics 40, 11–20 (1976). https://doi.org/
10.1016/0021-8928(76)90105-2

[16] Ramana, M.V., Kothari, M.: Pursuit-evasion games of high speed evader.
Journal of Intelligent &amp; Robotic Systems 85, 293–306 (2017). https:
//doi.org/10.1007/s10846-016-0379-3

[17] Garcia, E., Bopardikar, S.D.: Cooperative containment of a high-
speed evader. In: 2021 American Control Conference (ACC). IEEE,
New Orleans, LA, USA (2021). https://doi.org/10.23919/acc50511.2021.
9483097

[18] Makkapati, V.R., Sun, W., Tsiotras, P.: Optimal evading strategies for
two-pursuer/one-evader problems. Journal of Guidance, Control, and
Dynamics 41, 851–862 (2018). https://doi.org/10.2514/1.G003070

[19] Von Moll, A., Casbeer, D., Garcia, E., Milutinović, D., Pachter, M.: The
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